HiPerFRED ${ }^{\text {TM }}$ Epitaxial Diode with common cathode and soft recovery

$V_{\text {RSM }}$ V	$V_{\text {RRM }}$ V	Type
400	400	DSEC $30-04 \mathrm{~A}$

Symbol	Conditions	Maximum Ratings	
$\mathrm{I}_{\text {frMs }}$		50	A
$\mathrm{I}_{\text {FAVM }}$	$\mathrm{T}_{\mathrm{C}}=145^{\circ} \mathrm{C}$; rectangular, $\mathrm{d}=0.5$	15	A
$I_{\text {fSM }}$	$\mathrm{T}_{\mathrm{v},}=45^{\circ} \mathrm{C} ; \mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}(50 \mathrm{~Hz})$, sine	tbd	A
$\mathrm{E}_{\text {AS }}$	$\begin{aligned} & \mathrm{T}_{\mathrm{vJ}}=25^{\circ} \mathrm{C} ; \text { non-repetitive } \\ & \mathrm{I}_{\mathrm{AS}}=\operatorname{tbd} \mathrm{A} ; \mathrm{L}=\operatorname{tbd} \mu \mathrm{H} \end{aligned}$	tbd	mJ
$\mathrm{I}_{\text {AR }}$	$\mathrm{V}_{A}=1.5 \cdot \mathrm{~V}_{\mathrm{R}}$ typ.; $\mathrm{f}=10 \mathrm{kHz}$; repetitive	tbd	A
T_{v}		-55...+175	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {vJM }}$		175	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$		-55...+150	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {tot }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	95	W
M_{d}	mounting torque	0.8...1.2	Nm
Weight	typical	6	g

Symbol	Conditions	Characteristic Values typ. max.		
$\mathrm{I}_{\mathrm{R}} \quad 1$	$\begin{array}{ll} \mathrm{T}_{\mathrm{VJ}}=25^{\circ} \mathrm{C} ; & \mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{RRM}} \\ \mathrm{~T}_{\mathrm{VJ}}=150^{\circ} \mathrm{C} ; & \mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\text {RRM }} \end{array}$		$\begin{array}{r} 100 \\ 0.5 \end{array}$	$\mu \mathrm{A}$ mA
$\mathrm{V}_{\mathrm{F}}{ }^{(2)}$	$\begin{array}{ll} \mathrm{I}_{\mathrm{F}}=15 \mathrm{~A} ; & \mathrm{T}_{\mathrm{V} J}=150^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{V},}=25^{\circ} \mathrm{C} \end{array}$		$\begin{aligned} & 1.06 \\ & 1.47 \end{aligned}$	V
$\begin{aligned} & \overline{\mathbf{R}_{\mathrm{thJc}}} \\ & \mathbf{R}_{\mathrm{thch}} \end{aligned}$		0.25	1.6	KW KW
$\mathrm{trr}_{\text {r }}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=1 \mathrm{~A} ;-\mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mathrm{Ls} ; \\ & \mathrm{V}_{\mathrm{R}}=30 \mathrm{~V} ; \mathrm{T}_{\mathrm{VJ}}=25^{\circ} \mathrm{C} \end{aligned}$	30		ns
$\mathrm{I}_{\text {RM }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{R}}=100 \mathrm{~V} ; \mathrm{I}_{\mathrm{F}}=25 \mathrm{~A} ;-\mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s} \\ & \mathrm{~T}_{\mathrm{VJ}}=100^{\circ} \mathrm{C} \end{aligned}$	5.0	6.3	A

Pulse test: (1) Pulse Width = 5 ms , Duty Cycle <2.0 \%

(2) Pulse Width $=300 \mu \mathrm{~s}$, Duty Cycle $<2.0 \%$

Data according to IEC 60747 and per diode unless otherwise specified

IXYS reserves the right to change limits, test conditions and dimensions.

TO-247 AD

A = Anode,$C=$ Cathode,$T A B=$ Cathode
$\mathrm{t}_{\text {fav }}=2 \times 15 \mathrm{~A}$
$\mathrm{~V}_{\text {RRM }}=400 \mathrm{~V}$
$\mathrm{t}_{\mathrm{rr}}=30 \mathrm{~ns}$

A = Anode $\mathrm{C}=$ Catho $\mathrm{TAB}=$ Cathode

Features

- International standard package
- Planar passivated chips
- Very short recovery time
- Extremely low switching losses
- Low I_{Rm}-values
- Soft recovery behaviour
- Epoxy meets UL 94V-0

Applications

- Antiparallel diode for high frequency switching devices
- Antisaturation diode
- Snubber diode
- Free wheeling diode in converters and motor control circuits
- Rectifiers in switch mode power supplies (SMPS)
- Inductive heating
- Uninterruptible power supplies (UPS)
- Ultrasonic cleaners and welders

Advantages

- Avalanche voltage rated for reliable operation
- Soft reverse recovery for low EMI/RFI
- Low I_{Rm} reduces:
- Power dissipation within the diode
- Turn-on loss in the commutating switch

Dimensions see pages IXYS Data Book

